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Abstract

We study the first-passage time over a fixed threshold for a pure-jump subordinator
with negative drift. We obtain a closed-form formula for its survival function in
terms of marginal density functions of the subordinator. We then use this formula
to calculate finite-time survival probabilities in a structural model for credit risk, and
thus obtain a closed-form pricing formula for a single-name credit default swap (CDS).
This pricing formula is well calibrated on market CDS quotes. In particular, it explains
why the par CDS credit spread is not negligible when the maturity becomes short.
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1 Introduction

Credit default swaps (CDSs) have become the most popular credit derivatives in the past

two decades. Pricing CDSs is based on a reasonable model for credit risk. In the litera-

ture, there are basically two main classes of credit risk models: reduced-form models and

structural models. In reduced-form models, the precise mechanism leading to default is left

unspecified and the default time of a firm is modeled as a non-negative random variable,

whose distribution typically depends on economic factors. In this paper we alternatively
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consider a structural model, in which a firm defaults at the first time its asset value breaches

a low barrier. This barrier corresponds to the recovery value of the firm’s debt.

Classic structural models use a stochastic process with continuous paths to model a

firm’s asset value process. For example, in the pioneering first-passage model developed

by Black and Cox (1976), the asset value process was described by a geometric Brownian

motion. For an asset value process with continuous paths, default always occurs when the

asset value of the firm exactly hits the barrier. It is never the case that the firm’s value

would suddenly undershoot the default level. However, it is more reasonable and practical

to include jumps in stochastic models of asset value and incorporate skewness in the return

distribution, since default events are usually triggered by shocks, i.e. downward jumps in

the asset value.

In the last decade more and more attention has been paid to using stochastic processes

with jumps in structural models. For example, Zhou (2001) used a geometric jump-diffusion

process in modeling the market value of a firm’s asset and gave a pricing formula for the de-

faultable bond issued by the firm. It was originally discovered by Zhou (2001) that the credit

spread of a defaultable bond does not go to zero as its maturity goes to zero. Hilberink and

Rogers (2002) assumed that a firm’s market value follows an exponential spectrally negative

Lévy process and also studied credit spreads with short maturities. Kou and Wang (2004)

used a double exponential jump-diffusion model and obtained analytically tractable pric-

ing formulas for path-dependent options. Still using the double exponential jump-diffusion

model, Chen and Kou (2009) studied credit spreads, optimal capital structure, and implied

volatility of equity options. Lipton (2002) studied a geometric jump-diffusion model with

log-exponential jumps and gave a numerical example in which the par credit default spread

is not small with short maturity. More recently, Ruf and Scherer (2011) studied corpo-

rate bonds in a geometric jump-diffusion model having two-sided jumps and showed that

the limiting credit spread as its maturity goes to zero is given by the product of the local

default rate and the expected loss given default. All these papers focused on Poissonian

jumps and did not address the important issue of infinite activity. In this paper we consider

the asset value process that would possibly be of infinite activity but finite variation in a

structural model proposed by Madan and Schoutens (2008).

Why processes with infinite activity are important in modeling asset values? First of

all, pure-jump processes with infinite activity are able to capture both frequent small moves

and rare large moves, which makes them reasonable alternatives for jump diffusions when

describing asset returns. Also, dealing with pure-jump processes with good distributional

properties sometimes allows one to calibrate models more quickly and describe dependence
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structures between assets in a more straightforward way. More importantly, according to

Carr et al. (2002) who empirically investigated the fine structure of asset returns, there is

evidence from market prices of equity and option indicating that both physical and risk-

neutral processes for equity prices seem to be pure-jump processes of infinite activity and

finite variation. Here we highlight some of their findings: (1) index returns tend to be pure-

jump processes of infinite activity and finite variation, both physically and risk-neutrally.

A diffusion component appears to be statistically insignificant, while it may be present

in individual equity returns. (2) Jump components consistently account for significant

skewness levels from both equity and option prices. (3) The shape of the mean corrected

density for asset returns appears to be a long spike near zero conjoined with two convex

curves describing large returns. It apparently departs from that of a normal distribution

which is always concave within one standard deviation of the mean. In contrast, the densities

of processes with infinite activity and finite variation are consistent with both equity and

option prices.

Finite-time survival probability is an essential quantity in the calculation of a single-

name CDS. In the literature there are many efficient and fast numerical algorithms to

calculate finite-time survival probabilities. For example, Kou and Wang (2004) assumed

a double exponential jump diffusion for asset value and found an analytic approximation

of the first-passage time. Asmussen et al. (2004) obtained an explicit solution to the

first-passage time problem in a jump diffusion with phase-type jumps in both directions.

More recently, Asmussen et al. (2008) used a phase-type approximation to the CGMY Lévy

process and obtained exact computation of finite-time survival probabilities. Under the same

model as we use, Madan and Schoutens (2008) found a fast method to calculate survival

probabilities, which exploits the remarkable Wiener-Hopf factorization in combination with

results by Rogers (2000) and performs a very fast double Laplace transform inversion. In

this paper, we adopt an alternative approach to deal with finite-time survival probabilities

that originates from ruin theory. Motivated by Dickson and Waters (1993), who obtained

a closed-form formula for finite-time survival probabilities for a gamma process with drift,

we will show that a similar type of formula holds true for a general pure-jump subordinator

with drift. Using this formula we successfully explain why the par credit spread of a CDS

does not go to zero when the maturity goes to zero as discovered by Zhou (2001).

This paper is organized as follows. In Section 2 we describe the structural model and

obtain a closed-form formula for finite-time survival probabilities. In Section 3 we investi-

gate two special cases of subordinator for which the closed-form formula from Section 2 is

completely known. Finally, calibration results and proofs are given in Section 4 and Section
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5, respectively.

2 Structural approach for CDS pricing

2.1 Models and the CDS spread

On a filtered probability space (Ω,F , (Ft)t≥0,Q), where Q is a risk-neutral measure, suppose

that a firm’s asset value follows a stochastic process V = {Vt, t ≥ 0} such that

Vt = V0 eXt ,

where X = {Xt, t ≥ 0} is a Lévy process of the form

Xt = µt− St

with µ > 0 and S = {St, t ≥ 0} a pure-jump subordinator. Recall that a pure-jump

subordinator is a non-decreasing Lévy process whose Laplace exponent is given by

ϕ(s) := logE(e−sS1) =

∫ ∞
0

(e−sx − 1) Π(dx), s ≥ 0,

where Π(·) is the Lévy measure of S. Assume a constant risk-free interest rate r. Since

E(Vt) = V0ert for t ≥ 0 under Q, we immediately have

µ = r − ϕ(1).

Suppose a person owns a defaultable bond of the firm with face value N and maturity

T years. For a predetermined barrier level L(< V0), the default of the bond is defined as

the event that Vt ≤ L for some t ∈ (0, T ], or, equivalently,

Xt ≤ log(L/V0) for some t ∈ (0, T ].

When default occurs, the firm only pays the bondholder RN , where R ∈ (0, 1) is called

the recovery rate. To protect himself from the default risk, the bondholder enters a CDS

contract. The CDS has the same maturity as the bond. Under this CDS, the bondholder

makes predetermined payments to the protection seller. The payments continue until the

maturity date or until the bond defaults, whichever is earlier. In the case of default, the

protection seller is required to pay to the bondholder (1−R)N . The CDS spread (in basis

points (bpts)), denoted by c, is the yearly rate paid by the bondholder to enter the CDS

contract against the default of the bond.
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Note that we assume for simplicity a fixed recovery rate throughout the lifetime of a

CDS contract in this paper. However, the recovery rate at default in reality may depend on

the firm’s asset value at the time of default. The more the firm value process undershoots

below the default threshold, the lower the recovery rate one should expect. Our model

can be extended to cover this type of more realistic case since the closed-form formula for

finite-time survival probabilities that we will derive allows us to take partial derivatives with

respect to both time and threshold (see Theorem 2.1 below). We would like to investigate

this extension in future research.

If spread is paid continuously the value of the CDS can be expressed in terms of finite-

time survival probabilities. The finite-time survival probability up to time t (≤ T ), denoted

by δ(t), is defined as the probability under Q that no default occurs by time t, i.e.

δ(t) = Q (Xs > log(L/V0), for all 0 ≤ s ≤ t)

= Q
(

sup
0≤s≤t

(Ss − µs) < log(V0/L)

)
. (2.1)

According to Schoutens and Cariboni (2009, Section 3.1.1), the value of the CDS is

(1−R)N

(
−
∫ T

0

e−rtdδ(t)

)
− cN

∫ T

0

e−rtδ(t)dt,

where the first term and the second term respectively correspond to the present value of

the so-called loss leg and premium leg of the CDS contract. Pricing the CDS is to find the

par spread c = c(T ) which makes the loss leg equal to the premium leg:

c(T ) =
(1−R)

(
−
∫ T

0
e−rtdδ(t)

)
∫ T

0
e−rtδ(t)dt

= (1−R)

(
1− e−rT δ(T )∫ T

0
e−rtδ(t)dt

− r

)
. (2.2)

2.2 Finite-time survival probability

As shown in formula (2.2), the finite-time survival probability δ(t) is the essential quantity

for c(T ). Motivated by this, we derive a closed-form formula for the following finite-time

survival probability in Theorem 2.1:

δ(t, u) = Q
(

sup
0≤s≤t

(Ss − µs) < u

)
, t, u > 0. (2.3)

Note that δ(t), as defined in (2.1), becomes δ(t, log(V0/L)) in (2.3). Let us also define the

right-continuous version of the survival probability as

δ∗(t, u) = Q
(

sup
0≤s≤t

(Ss − µs) ≤ u

)
, t, u > 0. (2.4)
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From (2.3) and (2.4) it is easy to see that if δ∗(t, u) is left continuous at u, then δ(t, u) =

δ∗(t, u). The survival probability δ∗(t, u) has been studied in ruin theory for a long time. If

we consider the process {u+ µt− St, t ≥ 0} as an insurance risk process, then 1− δ∗(t, u) is

the finite-time ruin probability. Usually a positive safety loading condition, i.e. µ−E(S1) >

0, is assumed in ruin theory to prevent ruin from happening for sure in the long run. But

we do not require it in this paper since we focus within a finite-time horizon.

In the following, for t ≥ 0 we denote by Ft the cumulative distribution function (cdf) of

St and by ft the probability density function (pdf) of Ft if it exists.

Theorem 2.1 Let µ > 0 and S = {St, t ≥ 0} be a Lévy subordinator without drift. Suppose

that Ft(·) ∈ C1(0,∞). For t, u ≥ 0, we have

δ(t, u) = δ∗(t, u) (2.5)

= Ft(u+ µt)−
∫ t

0

1

s

(∫ µs

0

Fs(x) dx

)
ft−s(u+ µ(t− s)) ds (2.6)

Remark 2.1 When S is a compound Poisson process formula (2.6) can be found in, for

example, Asmussen and Albrecher (2010, Theorems V.2.1 and V.2.2). See also Dickson and

Waters (1993) for S being a gamma process.

Remark 2.2 By partial integration, formula (2.6) can be rewritten as

δ(t, u) = Ft(u+ µt)− µ
∫ t

0

Fs(µs)ft−s(u+ µ(t− s)) ds

+

∫ t

0

1

s

(∫ µs

0

xfs(x) dx

)
ft−s(u+ µ(t− s)) ds. (2.7)

We notice that formula (2.7) involves double integrals of ft with variable upper limits, which

inevitably cause various computational difficulties in general. However, δ(t, u) is explicitly

expressed and feasible to calculate provided that Ft and ft are both explicitly presented.

This enables us to perform the integrations and compute δ(t, u) for some known distributions

with valid probability densities (e.g. gamma and inverse Gaussian distributions that are to

be discussed in Section 3) using readily available computation packages.

Remark 2.3 Actually, we can easily extend formula (2.6) to the case where S is a spectrally

positive Lévy process with possibly unbounded variation; see e.g. Michna (2011) for α-stable

cases. Since we focus on processes with infinite activity but finite variation in this paper,

we will realize this extension in future research.
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Remark 2.4 To apply Theorem 2.1 one needs to check the smoothness of Ft. Here we list

several criteria:

(i) Let F̂1 be the characteristic function of F1. If∫
R
|F̂1(x)||x|n−1 dx <∞,

for some integer n, then Ft(·) ∈ Cn(R). This result is essentially due to the Fourier

inversion theorem; see Sato (1999, Theorem 5.28.2).

(ii) Ft has a pdf in C∞(0,∞) if

lim inf
t↓0

tα−2

∫ t

0

x2g(x) dx > 0,

for some α ∈ (0, 2), where g is the density of Π; see, e.g. Orey (1968).

(iii) Ft(·) ∈ C1(0,∞) if k(x) := xg(x) is decreasing, which is equivalent to the self-

decomposability of Ft, and k(0+) < ∞. Moreover, Ft(·) ∈ C∞(0,∞) if k(0+) = ∞.

See Sato (1999, Theorem 5.28.4) for these results.

As a direct application of Theorem 2.1, we are able to obtain a closed-form formula for

the par credit spread c(T ) by plugging formula (2.6) with u = log(V0/L) into formula (2.2).

2.3 Term structure of CDS with short maturity

One advantage of a closed-form formula for δ(t, u) is that it can explain why c(T ) does

not go to zero as T goes to zero. Actually, if limt↓0 δ(t) = 1 and δ(·) ∈ C1(0,∞), then by

L’Hôpital’s rule we obtain from (2.2) that

lim
T↓0

c(T ) = (1−R)

(
lim
T↓0

re−rT δ(T )− e−rT δ′(T )

e−rT δ(T )
− r
)

= −(1−R) lim
T↓0

δ′(T ). (2.8)

As Theorem 2.2 will show, downward jumps in S guarantee that limT↓0 δ
′(T ) < 0 and thus

a positive limiting credit spread. Note that a positive limiting credit spread can also be

achieved in a continuous geometric diffusion model where the information set available is not

complete. See Jarrow and Protter (2004) and references therein for details on this direction

of research.
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Theorem 2.2 Given conditions in Theorem 2.1, we additionally assume that Ft(x) and

ft(x) are continuous in a neighborhood of (t = 0, x) for all x > 0. Furthermore, assume that

(∂/∂t)Ft(x), (∂/∂t)ft(x) and (∂/∂x)ft(x) exist and are also continuous at (t = 0, x) for all

x > 0. If the Lévy measure Π admits a density g, then for fixed u > 0 we have

lim
t↓0

δ(t, u) = 1 and lim
t↓0

∂

∂t
δ(t, u) = −Π([u,∞)) = −

∫ ∞
u

g(x)dx. (2.9)

Remark 2.5 Relations (2.8) and (2.9) together give that

lim
T↓0

c(T ) = (1−R)

∫ ∞
log(V0/L)

g(x)dx. (2.10)

So the credit spread does not go to zero when maturity becomes short and the limiting

spread is determined by the Lévy measure of S and the recovery rate. Note that interest

rate r does not show up on the right-hand side of relation (2.10), which is reasonable since

interest rates should not affect the credit spread with very short maturity.

Remark 2.6 Relation (2.10) has also been obtained by Ruf and Scherer (2011, Theorems

3.1 and 3.2) for the case where S is a jump-diffusion process having two-sided jumps. Their

results show that if S contains only Poissonian jumps then the limiting credit spread as

maturity goes to zero is given by the product of the local default rate and the expected loss

given default, which is exactly as our relation (2.10) shows. So our Theorem 2.2 complements

their results for the case where S has infinite downward jumps.

3 Examples

As stated in Remark 2.2, to evaluate δ(t, u) by using formula (2.7) one needs to know fs for

0 < s ≤ t. In this section, we consider two special cases of subordinator: gamma processes

and inverse Gaussian processes, for which the marginal pdfs are explicitly known.

3.1 Gamma process

Recall that the gamma(a, b) distribution with parameters a, b > 0 has the pdf

f(x; a, b) =
ba

Γ(a)
xa−1e−bx, x > 0.

A Lévy process S = {St, t ≥ 0} is called a gamma(a, b) process if St follows the gamma(at, b)

distribution for every t > 0. The Lévy density of a gamma(a, b) process is given by g(x) =

ax−1e−bx, x ∈ (0,∞).

The following is a corollary of Theorems 2.1 and 2.2:
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Corollary 3.1 Let µ > 0 and S be a gamma(a, b) process with parameters a, b > 0.

(i) For t, u > 0,

δ(t, u) = Ft(u+ µt)− µ
∫ t

0

Fs (µs) ft−s (u+ µ(t− s)) ds

+
a

b

∫ t

0

Fs+1/a(µs)ft−s(u+ µ(t− s))ds, (3.1)

where ft and Ft are the pdf and cdf of the gamma(at, b) distribution, respectively.

(ii) For fixed u > 0,

lim
t↓0

δ(t, u) = 1 and lim
t↓0

∂

∂t
δ(t, u) = −

∫ ∞
u

ax−1e−bxdx.

Again, formula (3.1) with a = b = 1 was first obtained by Dickson and Waters (1993).

3.2 Inverse Gaussian process

Recall that the inverse Gaussian distribution, IG(a, b), with parameters a, b > 0 has the pdf

f(x; a, b) =
a√
2π

eabx−3/2 exp{−(a2x−1 + b2x)/2}, x > 0.

A Lévy process S = {St, t ≥ 0} is called an IG(a, b) process if St follows the IG(at, b)

distribution for every t > 0. The Lévy density of an IG(a, b) process is given by g(x) =

ae−b
2x/2/
√

2πx3, x ∈ (0,∞).

The following is also a corollary of Theorems 2.1 and 2.2:

Corollary 3.2 Let µ > 0 and S be an IG(a, b) process with parameters a, b > 0.

(i) For t, u > 0,

δ(t, u) = Ft(u+ µt)− µ
∫ t

0

Fs(µs)ft−s(u+ µ(t− s)) ds

+

∫ t

0

1

s

(∫ µs

0

xfs(x) dx

)
ft−s(u+ µ(t− s)) ds,

where ft and Ft are the pdf and cdf of the IG(at, b) distribution, respectively.

(ii) For fixed u > 0,

lim
t↓0

δ(t, u) = 1 and lim
t↓0

∂

∂t
δ(t, u) = −

∫ ∞
u

ae−b
2x/2

√
2πx3

dx.
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4 Calibration

We calibrate the gamma model and the IG model from Section 3 to two families of CDS

quotes: CDX.NA.IG index (125 North American companies) and iTraxx.EUR index (125

European companies). The quotes were collected on December 9, 2011. For each company,

we have its market CDS par spreads with seven maturities (1 year, 2 years, 3 years, 4 years,

5 years, 7 years, and 10 years). Altogether we have 250 real market CDS term structures.

In the calibration, models will be calibrated in order to match the real market spreads as

accurately as possible. Specifically, for each reference entity we minimize the mean absolute

error (MAE) given by

MAE =

∑
CDS par spreads |Market CDS par spread−Model CDS par spread|

Number of CDS par spreads
,

where the sum over CDS par spreads refers to all the CDS quotes from the company’s real

market CDS term structure. We carry out the calibration using R packages on a Linux

computer with an Intel Core i5 CPU (2.27 GHz). Aided by formula (2.7), the calculations

for δ(t, u) and c(T ) are very efficient. Under the gamma(IG) model the computer takes

about 0.004(0.056) seconds to calculate 10,000 CDS spreads.

Table 1 and Figure 1 are here.

Table 1 shows part of the calibration results for the CDX index. According to Moody’s

long-term credit ranking on December 9, 2011, we select two companies from each risk

category from Aa2 to Baa3 for demonstration. We apply the gamma model and the IG

model on each company and always assume that r = 1% and R = L/V0 = 40%. Here the

40% recovery rate is used for all companies. In reality, recovery rates vary across industries

as shown in Table 3 of Altman and Kishore (1996), which also shows an average recovery

rate around 40% of 696 defaulted bonds from different industries during the time period

from 1971 to 1995. For simplicity we use this average recovery rate in the calibration. Our

target is to find out the optimal pair (a, b) with the minimum MAE for each company. It

can be seen from Table 1 that both gamma and IG models well fit CDS term structures

in the CDX index. In particular, Figure 1 illustrates the results for McDonald’s CDS term

structure.

Table 2 and Figure 2 are here.

Table 2 shows the similar calibration results for the iTraxx index. Note that in iTraxx

we are able to find companies such as Nestle and Royal Dutch Shell from a higher category
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Aa1. It can be seen from Table 2 that both gamma and IG models well fit CDS term

structures in the iTraxx index. In particular, Figure 2 illustrates the results for Siemens’

CDS term structure.

Figures 3 and 4 are here.

It is worthwhile to point out that almost all the term structures in the 250 companies are

upward sloping, namely, CDS spreads are increasing over years. Both gamma and IG models

overall fit this kind of term structure very well. Among the 125 North American companies

in the CDX index, 79(80) companies have MAE of less than 5 bpts using the gamma(IG)

model. Among the 125 European companies in the iTraxx index, 102(99) companies have

MAE of less than 5 bpts using the gamma(IG) model. Moreover, the models can also

be used to cope with the situations in which a decreasing or a humped term structure is

present. See Figures 3 and 4 for artificial spread term structures of these two kinds from

both models. The other side of the coin is that the models do not fit well for the term

structures with large CDS spread values. For instance, the MAE is as high as 26 bpts when

calibrating the gamma model on Computer Sciences’ CDS term structure (210, 263, 293,

334, 366, 397, 423). This is definitely a big concern for using our model. We are still trying

to understand the underlying problem causing this limitation.

Tables 3 and 4 are here.

Next in Tables 3 and 4 we check that the limiting par credit spread when the maturity

goes to zero is indeed determined by formula (2.10). We first calculate the limiting par

spread directly by plugging formula (2.7) into (2.2) and letting T go to zero. Then we

compare the numerical results with the theoretical results obtained from (2.8). Here we

still assume R = L/V0 = 0.4. For a variety of values for (a, b, r), it is clearly seen that the

numerical results and the theoretical results are very close and that interest rates do not

affect the limiting credit spread.

5 Proofs

5.1 Proof of Theorem 2.1

Although the corresponding result is essentially obtained by Dickson and Waters (1993);

see also Dufresne et al. (1991) in the context of a gamma subordinator, we will give an

11



alternative proof for a general subordinator using a weak convergence result in D-space,

which is a space of all the cádlág functions on [0, t] embedded in the Skorokhod topology.

Since {St − µt, t ≥ 0} is a finite variation process with downward drift, the point 0 is

irregular for (0,∞); see, e.g. Kyprianou (2006, Theorem 6.5). Then by the same argument

as in the proof of Theorem V.2.2 of Asmussen and Albrecher (2010) we have that

δ∗(t, u) = Ft(u+ µt)− µ
∫ t

0

δ∗(t− s, 0)fs(u+ µs) ds. (5.1)

We can also show (5.1) by the convergence in (5.2) below. Note that ft(x) is continuous in

x > 0 under the assumption. Then, relation (5.1) and the dominated convergence theorem

imply that the function δ∗(t, u) for every t > 0 is continuous in u ∈ (0,∞). Therefore,

relation (2.5) holds.

We derive a closed-form formula for δ(t, 0) first. Consider a sequence of drifted compound

Poisson processes

S
(n)
t − µnt =

∫ t

0

∫
z≥1/n

z N(ds, dz)− µnt, n = 1, 2 . . . ,

where µn → µ as n → ∞, and N is a jump-counting measure of S. Then we see that

{S(n)
s − µns, 0 ≤ s ≤ t} converges in law to {Ss − µs, 0 ≤ s ≤ t} in D[0, t]-space; see, e.g.,

Jacod and Shiryayev (2003, Corollary VII.3.6) or Asmussen et al. (2004, Proposition 1).

Moreover, it is easy to see that a supremum f [·] := sup0≤s≤t(·) is a continuous functional

on D[0, t]; see Jacod and Shiryayev (2003, Chapter VI) or Embrechts et al. (1997, Section

A.2.5). Hence, it follows from the continuous mapping theorem that

sup
0≤s≤t

(
S(n)
s − µns

) D−→ sup
0≤s≤t

(Ss − µs) , n→∞,

which yields that

δ∗n(t, u) := Q
(

sup
0≤s≤t

(
S(n)
s − µs

)
≤ u

)
→ δ∗(t, u), n→∞, (5.2)

for every t, u > 0. Since δ∗n(t, u) is non-decreasing, uniformly bounded, and continuous in

u ∈ (0,∞), we see that the convergence in (5.2) is uniform in u ∈ (0,∞). So, for any ε > 0,

supu>0 |δ∗n(t, u)− δ∗(t, 0)| < ε/3 for n large enough. Moreover, noticing (5.1) and the similar

equality for δ∗n, we see that δ(t, u) and δ∗n(t, u) are right-continuous at u = 0. Hence it follows

that for any ε > 0 there exists a sequence {un, n = 1, 2, . . .} with |δ∗(t, un)− δ∗(t, 0)| < ε/3

and |δ∗n(t, un)− δ∗n(t, 0)| < ε/3 such that

|δ∗n(t, 0)− δ∗(t, 0)| ≤ |δ∗n(t, 0)− δ∗n(t, un)|+ |δ∗n(t, un)− δ∗(t, un)|+ |δ∗(t, un)− δ∗(t, 0)|

≤ ε/3 + sup
u>0
|δ∗n(t, u)− δ∗(t, 0)|+ ε/3 < ε,
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which yields that

δ∗n(t, 0)→ δ∗(t, 0), n→∞. (5.3)

On the other hand, denoted by F
(n)
t the cdf of S

(n)
t , we see from Theorem V.2.1 of Asmussen

and Albrecher (2010) that

δ∗n(t, 0) =
1

µt

∫ µt

0

F
(n)
t (x) dx.

Furthermore, it follows that for every t, x > 0

F
(n)
t (x)→ Ft(x), n→∞, (5.4)

since any marginal distributions of S(n) converges to those of S when S(n) D−→ S. Hence, it

follows from (5.3), (5.4) and the dominated convergence theorem that

δ∗(t, 0) =
1

µt

∫ µt

0

Ft(x) dx.

The above equality and relation (5.1) together yield (2.6).

5.2 Proof of Theorem 2.2

First, we prove the first relation of (2.9). Recall formula (2.7):

δ(t, u) = Ft(u+ µt)− µ
∫ t

0

Fs(µs)ft−s(u+ µ(t− s)) ds

+

∫ t

0

1

s

(∫ µs

0

xfs(x) dx

)
ft−s(u+ µ(t− s)) ds

= I1(t)− I2(t) + I3(t).

By Corollary 3 of Rüschendorf and Woerner (2002), for each fixed x > 0, we have

lim
t↓0

1

t
(1− Ft(x)) = Π([x,∞)) (5.5)

and

lim
t↓0

1

t
ft(x) = g(x). (5.6)

Relation (5.5) and the continuity of Ft(x) at (t = 0, x = u) immediately imply that

limt↓0 I1(t) = 1. For I2(t), we derive as follows:

0 ≤ I2(t) ≤ µ

∫ t

0

ft−s(u+ µ(t− s)) ds

= µ

∫ t

0

fs(u+ µs) ds

→ 0, as t→ 0,

13



where in the last step we use relation (5.6) and the continuity of ft(x) at (t = 0, x = u). As

to I3(t), since for each s > 0,

1

s

∫ µs

0

xfs(x) dx ≤ µFs(µs) ≤ µ,

we similarly obtain that limt↓0 I3(t) = 0. Hence,

lim
t↓0

δ(t, u) = 1.

Next, we prove the second relation of (2.9). Note that

∂

∂t
δ(t, u) = µft(u+ µt) +

∂

∂t
Ft(x)

∣∣∣
x=u+µt

− µ
∫ t

0

Fs(µs)
∂

∂t
ft−s(u+ µ(t− s)) ds

+

∫ t

0

1

s

(∫ µs

0

xfs(x) dx

)
∂

∂t
ft−s(u+ µ(t− s)) ds

= J1(t) + J2(t)− J3(t) + J4(t).

Obviously, limt↓0 J1(t) = 0 by (5.6). Since (∂/∂t)Ft(x) is continuous at (t = 0, x = u), by

(5.5) we obtain

lim
t↓0

J2(t) = −Π([u,∞)).

Therefore, the proof is complete if we can show that

lim
t↓0

J3(t) = 0 and lim
t↓0

J4(t) = 0.

Actually,

|J3(t)| ≤ µ

∫ t

0

∣∣∣∣ ∂∂tft−s(u+ µ(t− s))
∣∣∣∣ ds = µ

∫ t

0

∣∣∣∣ ∂∂sfs(u+ µs)

∣∣∣∣ ds

= t

∣∣∣∣ ∂∂sfs(u+ µs)

∣∣∣∣
s=s(t)

≤ t

∣∣∣∣ ∂∂sfs(x)

∣∣∣∣
s=s(t),x=u+µs(t)

+ µt

∣∣∣∣ ∂∂xfs(x)

∣∣∣∣
s=s(t),x=u+µs(t)

(5.7)

for some s(t) ∈ [0, t]. Since limt↓0 s(t) = 0, by (5.6) and the continuity of (∂/∂t)ft(x) at

(t = 0, x = u) we have

lim
t↓0

∂

∂s
fs(x)

∣∣∣
s=s(t),x=u+µs(t)

= g(u). (5.8)
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Moreover, by (5.5) and the continuity of (∂/∂x)ft(x) at (t = 0, x = u) we have

lim
t↓0

∂

∂x
fs(x)

∣∣∣
s=s(t),x=u+µs(t)

= 0. (5.9)

Plugging (5.8) and (5.9) into (5.7) we obtain

lim
t↓0

J3(t) = 0.

Since

|J4(t)| ≤
∫ t

0

1

s

(∫ µs

0

xfs(x) dx

) ∣∣∣∣ ∂∂tft−s(u+ µ(t− s))
∣∣∣∣ ds

≤ µ

∫ t

0

F (µs)

∣∣∣∣ ∂∂tft−s(u+ µ(t− s))
∣∣∣∣ ds

≤ µ

∫ t

0

∣∣∣∣ ∂∂tft−s(u+ µ(t− s))
∣∣∣∣ ds,

we similarly have

lim
t↓0

J4(t) = 0.

This completes the proof.

5.3 Proof of Corollary 3.1

For part (i), since∫ µs

0

xFs(dx) =
Γ(as+ 1)

Γ(as)

∫ µs

0

bas

Γ(as+ 1)
xase−bxdx =

as

b
Fs+1/a(µs),

formula (3.1) follows immediately from formula (2.7).

We are going to apply Theorem 2.2 to prove part (ii). For a gamma(a, b) process S,

obviously Ft(x), ft(x), and (∂/∂x)ft(x) are continuous at (t = 0, x) for all x > 0. Also, by

Theorem 1 and Corollary 3 of Rüschendorf and Woerner (2002), relations (5.5) and (5.6)

hold. So, to prove the continuity of (∂/∂t)ft(x) and (∂/∂t)Ft(x) at (t = 0, x) for x > 0 is

equivalent to prove that

lim
t↓0

∂

∂t
ft(x) = ax−1e−bx and lim

t↓0

∂

∂t
Ft(x) = −

∫ ∞
x

ay−1e−bydy. (5.10)

It is known that
∂

∂t
ft(x) = aft(x) (log b+ log x− ψ(at)) ,
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where ψ(·) = Γ′(·)/Γ(·) is the so-called digamma function. Note that we have the following

summation representation for the digamma function:

ψ(t) = −γ − 1

t
+
∞∑
k=1

(
1

k
− 1

k + t

)
, t 6= 0,

= −γ − 1

t
+O(t), (5.11)

and the following Laurent expansion for the gamma function:

Γ(t) =
∞∑
k=0

Γ(k)(1)

k!
tk−1, |t| < 1,

=
1

t
− γ +

1

6

(
3γ2 +

π2

2

)
t+O(t2), (5.12)

where γ is the Euler-Mascheroni constant. Hence, using (5.11) and (5.12),

∂

∂t
ft(x) =

abatxat−1e−bx

Γ(at)

(
log b+ log x+ γ +

1

at
+O(t)

)
=
abatxat−1e−bx

Γ(at)at
+ o(1)

→ ax−1e−bx as t→ 0.

Then we prove the second relation in (5.10). Using (5.5) and (5.11) we derive

∂

∂t
Ft(x) =

∫ x

0

∂

∂t
ft(y)dy

= a(log b− ψ(at))

∫ x

0

ft(y)dy + a

∫ x

0

ft(y) log y dy

= a(ψ(at)− log b)

∫ ∞
x

ft(y)dy − a
∫ ∞
x

ft(y) log y dy

= aψ(at)(1− Ft(x)) + o(1)

→ −
∫ ∞
x

ay−1e−bydy, as t→ 0,

where we use, in the third step, the fact that if a random variable X has the gamma(a, b)

distribution, then E logX = ψ(a)− log b.

5.4 Proof of Corollary 3.2

Part (i) is a direct application of Theorem 2.1. Again we are going to apply Theorem 2.2

to prove part (ii). For an IG(a, b) process S, obviously Ft(x), ft(x), and (∂/∂x)ft(x) are
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continuous at (t = 0, x) for all x > 0. Also, by Theorem 1 and Corollary 3 of Rüschendorf

and Woerner (2002), relations (5.5) and (5.6) hold. So, to prove the continuity of (∂/∂t)ft(x)

and (∂/∂t)Ft(x) at (t = 0, x) for x > 0 is equivalent to prove that

lim
t↓0

∂

∂t
ft(x) =

ae−b
2x/2

√
2πx3

and lim
t↓0

∂

∂t
Ft(x) = −

∫ ∞
x

ae−b
2y/2√

2πy3
dy.

It is easy to obtain that

∂

∂t
ft(x) = ft(x)

(
ab+ t−1 − a2tx−1

)
.

Therefore,
∂

∂t
ft(x) =

ft(x)

t
+ o(1)→ ae−b

2x/2

√
2πx3

, as t→ 0.

And, using (5.5),

∂

∂t
Ft(x) =

∫ x

0

∂

∂t
ft(y)dy

= (ab+ t−1)

∫ x

0

ft(y)dy − a2t

∫ x

0

ft(y)y−1dy

= −(ab+ t−1)

∫ ∞
x

ft(y)dy + a2t

∫ ∞
x

ft(y)y−1dy

= −1

t
(1− Ft(x)) + o(1)

→ −
∫ ∞
x

ae−b
2y/2√

2πy3
dy,

where we use, in the third step, the fact that if a random variable X has the IG(a, b)

distribution, then EX−1 = ba−1 + a−2. See, for example, Tweedie (1957, Section 6).
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Table 1: Calibration on CDS term structures in the CDX index
Company Moody’s 1y 2y 3y 4y 5y 7y 10y a b MAE
Wal-Mart Aa2 market 17 26 34 46 54 63 75

gamma 16 27 38 46 54 65 75 1.0723 5.7763 0.9342
IG 17 28 37 46 53 65 75 0.8581 2.9853 0.8779

GE Aa2 market 129 170 193 208 235 230 230
gamma 129 169 193 209 219 228 230 0.9678 3.4109 3.1505
IG model 129 168 193 208 218 228 230 0.9388 2.2315 3.1711

UPS Aa3 market 20 28 37 48 54 63 73
gamma 19 30 39 47 54 64 73 0.8402 5.1503 0.8670
IG 20 30 39 47 54 64 73 0.7165 2.8235 0.8149

IBM Aa3 market 15 20 28 35 43 56 68
gamma 9 19 28 37 44 56 67 1.4571 6.9843 1.6264
IG 10 19 28 37 44 56 67 1.0767 3.2980 1.4191

ACE A1 market 33 45 57 71 80 88 94
gamma 33 48 60 70 77 88 97 0.7893 4.5058 1.7606
IG 33 47 59 69 77 88 97 0.7236 2.6438 1.7869

Cisco A1 market 33 53 70 88 106 130 149
gamma 26 53 76 95 108 126 138 2.3463 6.9338 5.3810
IG 28 53 75 92 106 123 135 1.5774 3.1977 5.0485

McDonald’s A2 market 8 12 18 22 25 31 39
gamma 7 12 17 22 26 32 39 0.7844 6.0141 0.3810
IG 8 12 17 21 25 32 39 0.6503 3.0983 0.4039

Honeywell A2 market 15 22 31 41 47 55 65
gamma 15 24 33 40 46 56 65 0.8812 5.4827 0.8272
IG 15 24 32 39 46 55 65 0.7569 2.9512 0.7943

Sherwin-Williams A3 market 16 29 42 54 61 74 87
gamma 16 30 42 53 62 74 85 1.3622 6.2352 0.5173
IG 16 29 42 53 62 76 87 1.1267 3.1649 0.4765

Baxter Intl A3 market 13 19 25 32 36 45 55
gamma 12 19 26 32 37 45 53 0.8030 5.5796 0.7111
IG 13 19 26 32 37 45 53 0.6590 2.9377 0.5291

Black & Decker Baa1 market 14 21 30 38 46 57 66
gamma 12 21 31 39 46 56 66 1.1855 6.3079 0.4295
IG 12 21 30 38 45 56 67 0.9254 3.1384 0.3700

Ingersoll-Rand Baa1 market 11 22 28 36 40 48 56
gamma 14 22 29 35 40 48 56 0.7513 5.2958 0.6606
IG 15 22 29 35 40 48 57 0.6422 2.8747 0.7934

McKesson Baa2 market 10 16 22 29 36 45 52
gamma 9 16 23 29 35 44 53 1.0589 6.3852 0.6441
IG 10 17 23 29 35 44 52 0.7700 3.0986 0.6379

Cox Comm Baa2 market 21 32 44 57 66 79 90
gamma 18 33 46 57 66 79 90 1.3432 6.0853 0.9165
IG 20 34 46 57 66 79 90 1.0077 3.0250 0.8539

Cardinal Health Baa3 market 19 27 37 49 56 65 76
gamma 19 30 40 49 56 66 76 0.9365 5.3741 1.1603
IG 19 29 39 48 55 66 76 0.8048 2.9138 1.1178

CSX Baa3 market 24 31 41 52 63 76 89
gamma 17 31 43 54 63 76 87 1.3730 6.2221 1.9240
IG 17 31 43 54 63 76 87 1.0758 3.1140 1.7282
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Figure 1: Calibration of gamma and IG models for McDonald’s CDS term structure.
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Table 2: Calibration on CDS term structures in the iTraxx index
Company Moody’s 1y 2y 3y 4y 5y 7y 10y a b MAE
Nestle Aa1 market 22 27 36 43 50 57 65

gamma 19 28 36 43 48 57 65 0.7023 4.8862 0.8131
IG 20 29 36 43 48 57 65 0.5958 2.7197 0.7525

Royal Dutch Shell Aa1 market 46 59 72 83 90 99 105
gamma 46 61 73 82 90 99 107 0.6264 3.8343 0.8977
IG 46 60 72 82 89 99 107 0.6043 2.4126 0.9185

Statoil ASA Aa2 market 58 72 83 95 102 111 119
gamma 55 72 85 94 102 111 118 0.6008 3.5917 0.7814
IG 57 73 85 94 102 111 119 0.5694 2.2919 0.6316

Credit Suisse Aa2 market 111 125 138 153 163 164 165
gamma 111 130 143 151 157 164 167 0.4373 2.5501 2.7850
IG 111 129 142 151 157 164 167 0.4652 1.8850 2.7879

Munich Reinsurance Aa3 market 53 61 70 79 85 92 97
gamma 52 64 73 79 85 92 97 0.4003 3.1307 0.8949
IG 53 64 73 79 85 92 98 0.4043 2.1323 0.8700

JTI UK Finance Aa3 market 17 23 28 35 40 50 58
gamma 15 23 30 37 42 50 58 0.7229 5.1432 1.1124
IG 16 23 30 36 42 50 58 0.6225 2.8289 0.9345

Siemens A1 market 34 50 63 73 81 92 100
gamma 34 50 63 73 81 92 100 0.8195 4.5252 0.2489
IG 35 50 62 72 80 92 101 0.7284 2.6239 0.5032

ENI SpA A1 market 116 141 156 168 175 182 188
gamma 116 141 157 168 175 183 185 0.5637 2.7969 0.6538
IG 116 140 157 168 175 183 186 0.5872 1.9954 0.6433

Sanofi-Aventis A2 market 44 55 63 72 79 86 92
gamma 43 55 64 72 77 85 92 0.4816 3.5408 0.5602
IG 44 55 64 72 77 86 93 0.4697 2.2911 0.5156

Vattenfall AB A2 market 40 52 65 75 87 95 105
gamma 35 52 65 76 84 96 105 0.8712 4.5971 1.2847
IG 36 52 65 76 84 96 105 0.7551 2.6293 1.1158

Groupe Danone A3 market 41 56 68 80 86 100 107
gamma 39 56 69 79 87 98 107 0.7741 4.2896 0.7705
IG 40 56 69 79 87 98 107 0.6915 2.5368 0.6274

TeliaSonera AB A3 market 31 47 62 76 85 98 107
gamma 31 49 64 76 85 98 108 1.0541 5.0289 0.7387
IG 31 49 63 75 85 98 108 0.9232 2.8034 0.7453

Pearson Baa1 market 26 35 45 54 64 75 84
gamma 22 35 46 56 63 74 84 0.9505 5.2192 0.9299
IG 23 35 46 55 63 74 84 0.7977 2.8343 0.8108

Wolters Kluwer Baa1 market 30 46 60 72 79 89 97
gamma 30 46 59 70 78 89 99 0.9148 4.8261 0.9100
IG 31 46 59 69 78 89 99 0.7936 2.7177 1.2009

Royal KPN NV Baa2 market 55 76 93 108 116 128 136
gamma 55 78 95 107 116 128 136 0.8633 4.1123 0.6157
IG 55 77 94 107 116 128 137 0.8048 2.5005 0.5750

British Telecom Baa2 market 54 75 91 106 114 124 131
gamma 54 76 92 104 112 124 132 0.8117 4.0355 0.8200
IG 54 75 91 103 113 125 133 0.7731 2.4842 1.0609

Royal Ahold Baa3 market 54 80 101 121 132 145 154
gamma 54 83 104 120 131 145 154 1.2400 4.7376 1.1205
IG 54 82 103 119 131 145 154 1.0840 2.6949 1.0450

Tate & Lyle Baa3 market 25 42 57 75 86 98 107
gamma 25 44 60 73 84 98 109 1.4625 5.9228 1.6145
IG 25 43 59 73 83 98 110 1.1952 3.0573 1.6257
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Figure 2: Calibration of gamma and IG models for Siemens CDS term structure.
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Figure 3: Artificial decreasing term structures for gamma(a = 0.0122, b = 0.3969) and
IG(a = 0.0165, b = 0.3085) models.
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1.6758, b = 2.2185) models.
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Table 3: Limiting credit spread when maturity goes to zero: gamma model

a b r Numerical Theoretical
0.5 5 1% 5.645955 5.645982

0.5 5 5% 5.645975 5.645982

1.0 5 1% 11.29197 11.29196

1.0 5 5% 11.29199 11.29196

1.5 5 1% 16.93792 16.93795

1.5 5 5% 16.93794 16.93795

2.0 5 1% 22.58394 22.58393

2.0 5 5% 22.58396 22.58393

Table 4: Limiting credit spread when maturity goes to zero: IG model

a b r Numerical Theoretical
0.25 2.5 1% 8.705575 8.705537

0.25 2.5 5% 8.705595 8.705537

0.50 2.5 1% 17.41108 17.41107

0.50 2.5 5% 17.41110 17.41107

0.75 2.5 1% 26.11665 26.11661

0.75 2.5 5% 26.11667 26.11661

1.00 2.5 1% 34.82215 34.82215

1.00 2.5 5% 34.82224 34.82215

26


